
WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian
Splatting

Huapeng Li
University of Zurich
huapeng.li@uzh.ch

Wenxuan Song
ETH Zurich

wesong@student.ethz.ch

Tianao Xu
ETH Zurich

tianaxu@student.ethz.ch

Alexandre Elsig
ETH Zurich

elsiga@student.ethz.ch

Jonas Kulhanek
CTU in Prague, ETH Zurich
jonas.kulhanek@cvut.cz

3DGS (451.4 fps)

Train: 12min, PSNR: 22.9

SeaThru-NeRF (0.07fps)

Train: 10h, PSNR: 25.9

SeaThru-NeRF’s

Restoration

Ours (56.7 fps)

Train: 7.2min, PSNR: 29.8
Our Restoration Ground Truth

3DGS (424.0 fps)

Train: 13min, PSNR: 21.5

SeaThru-NeRF (0.07fps)

Train: 10h, PSNR: 21.8

SeaThru-NeRF’s

Restoration

Ours (56.9 fps)

Train: 7.7min, PSNR: 24.7
Our Restoration Ground Truth

Figure 1. Our approach surpasses the performance of state-of-the-art NeRF-based underwater reconstruction methods [18] while offering
real-time rendering speed [15].

Abstract

The underwater 3D scene reconstruction is a challeng-
ing, yet interesting problem with applications ranging from
naval robots to VR experiences. The problem was success-
fully tackled by fully volumetric NeRF-based methods which
can model both the geometry and the medium (water). Un-
fortunately, these methods are slow to train and do not offer
real-time rendering. More recently, 3D Gaussian Splatting
(3DGS) method offered a fast alternative to NeRFs. How-
ever, because it is an explicit method that renders only the
geometry, it cannot render the medium and is therefore un-
suited for underwater reconstruction. Therefore, we pro-
pose a novel approach that fuses volumetric rendering with
3DGS to handle underwater data effectively. Our method
employs 3DGS for explicit geometry representation and a
separate volumetric field (queried once per pixel) for cap-
turing the scattering medium. This dual representation fur-
ther allows the restoration of the scenes by removing the
scattering medium. Our method outperforms state-of-the-
art NeRF-based methods in rendering quality on the un-

derwater SeaThru-NeRF dataset. Furthermore, it does so
while offering real-time rendering performance, addressing
the efficiency limitations of existing methods.
Web: https://water-splatting.github.io

1. Introduction

Neural Radiance Fields (NeRFs) [24] have recently gained
significant popularity due to their ability to offer photoreal-
istic 3D scene reconstruction quality. This has opened up
new avenues in the field of 3D rendering and reconstruc-
tion. However, the landscape of 3D rendering techniques
is rapidly evolving. More recently, point splatting methods
have experienced a resurgence in the form of 3D Gaussian
Splatting (3DGS) [15], which matches NeRFs in terms of
rendering quality and offers real-time rendering speed, bet-
ter editability, and control.

The reconstruction of scattering scenes, such as foggy
and underwater environments, is an interesting research
area with applications ranging from naval robots to VR ex-

https://water-splatting.github.io

periences. Reconstructing geometry inside a water volume
is challenging due to the presence of the scattering medium
with properties different from air. In a typical scene, the pri-
mary requirement is to represent the surface. Both NeRFs
and Gaussian splatting methods are optimized to focus on
representing the surfaces only, thereby gaining better effi-
ciency. In the case of NeRFs, since they are fully volu-
metric, they should theoretically be able to represent the
medium fully volumetrically. However, this is no longer
the case as the proposal sampler used to speed up NeRFs
prevents them from learning volumes well.

To address this issue, a NeRF approach, SeaThru-NeRF
[18], was proposed, which uses two fields: one for the ge-
ometry and one for the volume in between. However, it is
slow in both rendering and training. Therefore, we propose
a novel approach to represent the geometry explicitly using
3DGS but to represent the volume in between using a vol-
umetric representation. The renderer we propose not only
surpasses the rendering quality of fully volumetric represen-
tations, as demonstrated by [18] but also achieves rendering
and training speeds comparable to 3DGS.

To validate our method, we evaluate it on the established
benchmark underwater dataset - SeaThru-NeRF [18]. The
results of our evaluation demonstrate the effectiveness of
our proposed method in achieving high-quality, efficient un-
derwater reconstruction. In summary, we make the follow-
ing contributions:

1. Splatting with Medium: We introduce a novel ap-
proach that combines the strengths of Gaussian Splatting
(GS) and volume rendering. Our method employs GS for
explicit geometry representation and a separate volumetric
field for capturing the scattering medium. This dual rep-
resentation allows for the synthesis of novel views in scat-
tering media and the restoration of clear scenes without a
medium.

2. Loss Function Alignment: We propose a novel loss
function designed to align 3DGS with human perception of
High Dynamic Range (HDR) and low-light scenes.

3. Efficient Synthesis and Restoration: We demon-
strate that our method outperforms other models on synthe-
sizing novel view on real-world underwater data and restor-
ing clean scenes on synthesized back-scattering scenes with
much shorter training and rendering time.

2. Related Work

2.1. NeRF

The field of 3D scene reconstruction has gained signif-
icant attention with the advent of NeRF methods [23,
24, 34]. NeRFs represent the 3D scene as a radiance
field—comprising differential volume density and view-
dependent color—rendered using a volume rendering in-
tegral from a list of samples sampled along the ray [29].

Originally, NeRFs utilized Multilayer Perceptrons (MLPs)
for representing the radiance field [3, 4, 24], but they were
slow to train and render. To accelerate the training and ren-
dering processes, alternative methods have been proposed
using discrete grids [11, 43], hash grids [5, 26, 36], tenso-
rial decomposition [9, 31], point clouds [40], or tetrahedral
mesh [17]. NeRFs have been enhanced in various ways, in-
cluding improved anti-aliasing [3, 5], handling of large 3D
scenes [35], and complex camera trajectories [4, 38]. More-
over, NeRFs have been extended to a wide range of applica-
tions such as semantic segmentation [6, 16], few-view novel
view synthesis [7, 8, 20, 39, 44], and generative 3D model-
ing [22, 27]. Despite these advancements, the slow render-
ing speed of NeRFs remains a critical limitation, hindering
their widespread adoption on end-user devices.

2.2. 3D Gaussian Splatting

Recently, Gaussian Splatting (3DGS) [15] has seen a resur-
gence as a powerful method for real-time 3D rendering,
matching the quality of Neural Radiance Fields (NeRFs)
[24] but with significantly faster speeds even suitable for
end-user devices [15]. This technique enhances control and
editability since scenes are stored as editable sets of Gaus-
sians, allowing for modifications, merging, and other ma-
nipulations. Additionally, the original 3DGS method has
been refined to improve anti-aliasing [45] and adapt den-
sity control more effectively [42]. Owing to these advance-
ments, 3DGS has been widely adopted in various applica-
tions such as large-scale reconstructions [21], 3D genera-
tion [10], simultaneous localization and mapping (SLAM)
[14, 19], and open-set segmentation [28]. Despite its
state-of-the-art rendering quality and impressive handling
of complex scenes, 3DGS’s explicit representation nature
limits its use in scenarios requiring the depiction of semi-
transparent volumes, such as underwater reconstructions
where light scattering and absorption are significant chal-
lenges [15].

2.3. Computer Vision in Scattering Media

There are many challanges in underwater computer vision.
The complex lighting conditions including scattering and
attenuation of light leading to distorted images and the
failure of traditional algorithms trained on clear-air scenes
[12]. WaterNeRF [33] estimates the medium parameters
separately from the rendering and works with images that
have been histogram-equalized. In our method we directly
modify the rendering equation. ScatterNeRF [30] uses a
volumetric representation of the scene, by extending the
NeRF rendering equation to include scattering properties
of the medium for adverse weather environments, with
a separation of the backscatter component of the image.
Our method is more specialized for underwater and foggy
scenes. SeaThru [2] introduces a method for removing wa-

ter from underwater images. This method addresses color
distortion in underwater images by revising the image for-
mation model from [1], accurately estimating backscatter,
and correcting colors along the depth axis. SeaThru-NeRF
[18] implements the image formation model [1] that sepa-
rates direct and backscatter components, into the NeRF ren-
dering equations, which is highly specialized for underwa-
ter scenes. We implemented a similar model but on Gaus-
sian Splatting, which yields higher performance and enables
real-time rendering.

3. Method
We start by briefly reviewing 3DGS and the rendering
model in scattering media in Sec. 3.1. Then, we illus-
trate our proposed rendering model combining 3DGS with
medium encoding in Sec. 3.2. At last, we explain our pro-
posed loss function to align 3DGS with human perception
of HDR scenes in Sec. 3.3.

3.1. Preliminaries

3D Gaussian Splatting models a scene with explicit learn-
able primitives G0, G1, ..., GN . Each Gaussian Gi is defined
by a central position µi and covariance matrix Σi [15]:

Gi(p) = e−
1
2 (p−µi)

T (Σi)
−1(p−µi). (1)

3DGS primitive also has two additional parameterized
properties: opacity oi and spherical harmonics coeffi-
cients SHi to represent directional appearance component
(anisotropic color). In order to render pixel-wise color,
primitives are transformed into camera space via a viewing
transformation W and the Jacobian of the affine approxima-
tion of the projective transformation J on Σi, then we get
the projected 2D means µ̂i and 2D covariance matrices Σ̂i

as:

Σ̂i = (JWΣiW
TJT)1:2,1:2 , µ̂i = (Wµi)1:2 , (2)

and the depth of Gi on z-coordinate:

si = (Wµi)3. (3)

The Gaussian kernel Ĝi of 2D Gaussian is represented as:

Ĝi(p) = e−
1
2 (p−µ̂i)

T (Σ̂i)
−1(p−µ̂i), (4)

where p is the coordinate of the pixel. For rasterization,
each Gaussian is truncated at 3 sigma, considering only
those intersecting with the patch comprising 16× 16 pixels
within this range, based on the property that about 99.7%
of the probability lies within 3 sigma of the mean. Thus,
the pixel color is computed by alpha blending of the sorted
intersected Gaussians Gi whose αi are higher than a thresh-
old:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) , αi = σ(oi) · Ĝi(p) , (5)

where ci is the color given the view direction, σ(·) is the
Sigmoid function and N is the number of Gaussians in-
volved in alpha blending. During optimization, 3DGS peri-
odically densify Gaussians with high average gradient on
2D coordinates µ̂i across frames via splitting large ones
and duplicating small ones. In the meantime, 3DGS prunes
primitives with low opacity for acceleration and periodi-
cally set αi close to zero for all Gaussians to moderate the
increase of floaters close to the input cameras.

For scene rendering in scattering media we use the re-
vised underwater image formation model from [1] where
the final image I is separated into a direct and backscatter
component

I = O · e−βD(vD)·z︸ ︷︷ ︸
Direct Image component

+B∞ · (1− e−βB(vB)·z)︸ ︷︷ ︸
Backscatter Image component

, (6)

where O is the clear scene captured at depth z in no
medium, B∞ is the backscatter color of the water at infi-
nite distance. The colors get multiplied with attenuations,
where the βD and βB are attenuation coefficients for the
direct and backscatter components of the image which rep-
resent the effect the medium has on the color. The vector
vD represents the dependencies for the direct component,
which includes factors such as the depth z, reflectance, am-
bient light, water scattering properties, and the attenuation
coefficient of the water. The vector vB represents the de-
pendencies for the backscatter component, which includes
ambient light, water scattering properties, the backscatter
coefficient, and the attenuation coefficient of the water.

3.2. Splatting with Medium

We illustrate the pipeline of our method in Fig. 2. The in-
put to our model is a set of images with scattering medium
and corresponding camera poses. We initialize a set of 3D
Gaussians via SfM [15] and optimize them with medium
properties encoded by a neural network. Under the occlu-
sion of both primitives and medium, our model acquires
the transmittance along the ray and is capable of synthesiz-
ing medium component and object component in the novel
view. Below we derive the whole model in detail.

Considering the expected color of a pixel integrated
along the camera ray r(s) = o + d(s) from the camera
to infinitely far C(r) =

∫∞
0

T (s)σ(s)c(s)ds [13] because
of unbounded rendering of 3DGS [15], we release the con-
straints on light traveling in clear air to through a scattering
medium [18] by adding the medium term:

C(r) =

∫ ∞

0

T (s)(σobj(s)cobj(s)+σmed(s)cmed(s))ds (7)

T (s) = exp(−
∫ ∞

0

(σobj(s) + σmed(s))ds), (8)

Figure 2. Splatting with Medium: We start rendering by casting a ray per pixel and collect the patch-intersected Gaussians along the ray
and their color given ray direction. Then, we walk through the list of sorted Gaussians per pixel, query their opacity and depth, based on
which we acquire the transmittance of both Gaussians and medium, rendering the Gaussians and the segments between adjacent two to
obtain the Medium component and the Object component.

where σobj/σmed and cobj/cmed are density and color of ob-
jects and medium respectively.

Following [18], we take σmed and cmed to be constant per
ray and separate per color channel. In order to apply dis-
cretized representation in 3DGS, the transmittance Ti(s) in
front of the i-th Gaussian Gi (and behind (i-1)-th Gaussian
Gi−1) with depth s ∈ [si−1, si] can be decomposed as

Ti(s) = T obj
i Tmed(s), T obj

i =

i−1∏
j=1

(1− αj) (9)

where T obj
i is the accumulated transmittance contributed by

previous primitives’ occlusion [15] and

Tmed(s) = exp(−
∫ s

0

σmed(s)ds) = exp(−σmeds) (10)

is the accumulated transmittance under the effect of medium
from the camera to depth s. Then, the color is composed
with discretized Gaussians and integrable medium

C(r) =

N∑
i=1

Cobj
i (r) +

N∑
i=1

Cmed
i (r). (11)

The contributed color of the Gi to final output is

Cobj
i (r) = T obj

i Tmed(si)αici

= T obj
i αiciexp(−σmedsi),

(12)

where αi is the opacity given the relative position between
the pixel p and µi in Eq. (5) and ci = cobj

i is the color given
the ray direction. The contributed color of the medium be-
tween the (i-1)-th and Gi is

Cmed
i (r) =

∫ si

si−1

T obj
i Tmed(s)σmedcmedds

= T obj
i cmed[exp(−σmedsi−1)− exp(−σmedsi)].

(13)

To precisely estimate the properties of medium, we also
include the background medium term from the last Gaus-
sian GN to infinitely far

Cmed
∞ (r) =

∫ ∞

sN

T obj
i Tmed(s)σmedcmedds

= T obj
i cmedexp(−σmedsN)

(14)

into the accumulated color.
As discussed in [1], the effective σmed experienced a

camera with wide-band color channels by differs in Cobj
· (r)

and Cmed
· (r), following [18], we use two sets of parame-

ters, object attenuation σattn and medium back-scatter σbs

for Cobj
i (r) and Cmed

i (r) respectively. By setting s0 = 0,
our final equations of rendered color are:

C(r) =

N∑
i=1

Cobj
i (r) +

N∑
i=1

Cmed
i (r) + Cmed

∞ (r), (15)

Cobj
i (r) = T obj

i αiciexp(−σattnsi), (16)

Cmed
i (r) = T obj

i cmed[exp(−σbssi−1))− exp(−σbssi)],

(17)

Cmed
∞ (r) = T obj

N cmedexp(−σbssN). (18)

3.3. Loss Function Alignment

In vanilla 3DGS, the loss function is combined with an L1

Loss and a D-SSIM Loss, which suits primitives without
shared parameters. Inspired by [25], we propose a regu-
larized loss function LReg to boost the weight of the dark
regions in optimization to align with how humans perceive
dynamic range. To be more specific, we apply a pixel-wise
weight W = {wi,j} on both rendered estimate ŷ and target

image y, where wi,j = (sg(ŷi,j) + ϵ)−1 with pixel coordi-
nate (i, j) and sg(·) denotes stopping gradient of its argu-
ment, which backpropagates zero derivative.

Thus, we have our regularized L1 Loss

LReg-L1 = |W ⊙ (ŷ − y)|, (19)

which results in less blur and sharper edges, and our regu-
larized D-SSIM Loss

LReg-DSSIM = LDSSIM(W ⊙ y,W ⊙ ŷ), (20)

which encourages high structural similarity between y and
ŷ. Our final proposed loss function is

LReg = (1− λ)LReg-L1
+ λLReg-DSSIM, (21)

which encourages Gaussian optimization to better align the
human eye’s perception of the dynamic range.

4. Experiments
4.1. Experiments

Implementation Details: Our implementation is based on
the reimplemented version of 3DGS released by NeRF-
Studio. Following [42, 46], we accumulate the norms of the
individual pixel gradients of µi for primitive densification.
For the medium encoding, we use a spherical harmonic en-
coding [37] and a MLP with 2 linear layers with 128 hidden
units and Sigmoid activation, followed by Sigmoid activa-
tion for cmed and Softplus activation for σattn and σbs. At
each densification and pruning step of the 3DGS, the mov-
ing averages in the Adam optimizer of the medium encod-
ing are reset.
SeaThru-NeRF Dataset: SeaThru-NeRF Dataset released
by [18] contains real-world scenes acquired from four dif-
ferent scenes in sea: IUI3 Red Sea, Curaçao, Japanese Gar-
dens Red Sea, and Panama. There are 29, 20, 20 and 18
images respectively, among which 25, 17, 17 and 15 images
are used for training and the rest 4, 3, 3 and 3 are used for
validation. The dataset encompasses a variety of water and
imaging conditions. The images were captured in RAW for-
mat using a Nikon D850 SLR camera housed in a Nauticam
underwater casing with a dome port, which helped prevent
refractions that could disrupt the pinhole model. These im-
ages were then downsampled to an approximate resolution
of 900 × 1400. Prior to processing, the input linear images
underwent white balancing with a 0.5% clipping per chan-
nel to eliminate extreme noise pixels. Lastly, COLMAP
[32] was employed to determine the camera poses.
Simulated Dataset: To further evaluate the performance of
the proposed method, we take a standard NeRF dataset -
the Garden scene from the Mip-NeRF 360 dataset [4] - and
added fog to it to simulate the presence of medium. We
used 3DGS to extract the depth maps. These maps were

then utilized to create scenarios simulating both underwa-
ter and foggy conditions. In line with method Eq. (6),
we utilized the following parameters to simulate easy foggy
scenario: βD = [0.6, 0.6, 0.6], βB = [0.6, 0.6, 0.6], and
B∞ = [0.5, 0.5, 0.5]. The parameters for the hard foggy
case are: βD = [0.8, 0.8, 0.8], βB = [0.6, 0.6, 0.6], and
B∞ = [0.5, 0.5, 0.5].
Baseline methods: All methods were trianed on the same
set of white-balanced images. For rendering scenes with the
medium, we compare several NeRF techniques: SeaThru-
NeRF [18], the reimplementation of SeaThru-NeRF re-
leased on NeRF-Studio (SeaThru-NeRF-NS) [36], Zip-
NeRF [5] and 3DGS [15]. For each baseline method, we
use the PSNR, SSIM, and LPIPS [47] metrics to compare
rendering quality. We present the alpha blending of depth as
the depth map and the rendering without medium to demon-
strate the ability to decouple the medium and the object for
SeaThru-NeRF and our method. We also calculate the FPS
and total training time using the same RTX 4080 GPU to
illustrate the speed difference between baselines and our
method. All reported results are averaged over three runs.

4.2. Results

First, we evaluated the performance of our method using the
standard benchmark dataset, the SeaThru-NeRF Dataset.
Table 1 compares PSNR, SSIM, LPIPS, average FPS and
average training time with the baseline methods across the
validation sets of four scenes. Our method demonstrates its
superiority in the majority of cases and efficiency on both
rendering and training.

Fig. 3 shows that the mainstream 3DGS and NeRF ap-
proachs are short at reconstruction on back-scattering me-
dia. 3DGS prunes the Gaussians with low opacity, leaving
dense and muddy cloud-like primitives to fit the medium,
which causes artifacts in the novel views. Zip-NeRF strug-
gles to model the geometrical surface, leading to an unreal
scene reconstructed with little media left.

Fig. 4 demonstrates that in both the ’IUI3 Red Sea’,
the ’Japanese Gardens Red Sea’ and ’Panama’ scenes, our
method delivers superior quality and more effectively sep-
arates medium and object than the SeaThru-NeRF, espe-
cially in deeper and more complex scenes (as highlighted in
the red square). Additionally, our depth map reveals much
finer details compared to SeaThru-NeRF, which struggles
to produce a reasonable depth map at greater distances, as
indicated by the red color in the upper right corner of the
depth map. We also achieve higher PSNR values in both
scenes. The same advantages are observed in simulated
scenes, where our method renders better details (indicated
by the red square) than the SeaThru-NeRF in both easy and
hard foggy scenes as depicted in Fig. 5. Our rendering with-
out medium and depth maps significantly outperform those
from the SeaThru-NeRF, especially in scenes that are far-

GT Ours SeaThru-NeRF 3DGS Zip-NeRF

Figure 3. Underwater scene rendering in the ’Curasao’ scene. From left to right: white-balanced ground-truth image, our result, SeaThru-
NeRF’s result, 3DGS’ result, and Zip-NeRF’s result. Both traditional 3DGS and NeRF with a proposal sampler cannot handle semi-
transparent medium well.

GT Ours PSNR=29.84 SeaThru-NeRF PSNR=25.91 Our Restoration SeaThru-NeRF’s Restoration

GT Ours PSNR=24.74 SeaThru-NeRF PSNR=21.84 Our Restoration SeaThru-NeRF’s Restoration

GT Ours PSNR=31.62 SeaThru-NeRF PSNR=27.85 Our Restoration SeaThru-NeRF’s Restoration

Figure 4. Underwater scene rendering in the ’IUI3 Red Sea’ scene, ’Japanese Gardens Red Sea’ scene and ’Panama’ scene. We compare
our method with SeaThru-NeRF by showing both the full image and the rendering without the medium. Furthermore, under each image,
we show the depth maps (for GT the depth map from pre-trained model [41], and highlighted region from the image. For Restoration,
we further show the rendered medium without rendering objects. Our method achieves better rendering quality and preserves finer distant
geometric details while reducing the amount of floaters.

Table 1. Quantitative evaluation on the SeaThru-NeRF dataset. We show PSNR↑, SSIM↑, LPIPS↓, Avg. FPS↑, and Avg. Training
Time↓

Dataset/Metric IUI3 Red Sea Curaçao J.G. Red Sea Panama Avg. Avg.
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS FPS Time
SeaThru-NeRF 25.908 0.785 0.304 30.193 0.873 0.210 21.841 0.767 0.249 27.846 0.834 0.224 0.07 10h
SeaThru-NeRF-NS 26.755 0.826 0.168 30.959 0.915 0.133 23.282 0.876 0.111 31.276 0.937 0.071 0.9 2h
ZipNeRF 16.937 0.474 0.412 19.956 0.442 0.421 19.022 0.349 0.483 19.012 0.349 0.482 0.9 6h
3D Gauss. 22.980 0.843 0.2458 28.313 0.873 0.221 21.493 0.854 0.216 29.200 0.893 0.152 412.1 17.4min
Ours 29.840 0.889 0.203 32.203 0.948 0.116 24.741 0.892 0.116 31.616 0.942 0.080 41.8 9.4min

GT Ours SeaThru-NeRF-NS Our Restoration PSNR=15.70 SeaThru-NeRF-NS’ Restoration PSNR=13.11

GT Ours SeaThru-NeRF-NS Our Restoration PSNR=14.06 SeaThru-NeRF-NS’ Restoration PSNR=10.76

Figure 5. Simulated scene rendering with the easy foggy scene (upper) and hard foggy scene (lower). We compare our method with
SeaThru-NeRF by showing both the full image and the rendering without the attenuation (restoration). Furthermore, under each image,
we show the depth maps (for GT the depth map from pre-trained model [41]), and highlighted region from the image. For restoration,
we further show the rendered medium without rendering objects. Our results exhibit better restoring quality and reasonable depth map
compared to SeaThru-NeRF-NS’ results.

ther from the camera. While our method’s predictions may
appear blurry and the object map unclear in the upper right
corner for the hard foggy scene, the results from SeaThru-
NeRF are considerably worse. The restoration quality com-
parison presented in Table 2 further quantitatively demon-
strates the superiority of our method in simulated scenes.
Overall, our method surpasses SeaThru-NeRF in both un-
derwater and simulated scenes.

Table 2. Restoration Performance. (PSNR↑/SSIM↑/LPIPS↓)

Dataset/Metric Foggy-Easy Foggy-Hard
Method PSNR SSIM LPIPS PSNR SSIM LPIPS
SeaThru-NeRF-NS 13.11 0.32 0.58 10.76 0.29 0.63
Ours 15.70 0.37 0.56 14.06 0.45 0.54

4.3. Ablation Study

We isolate the different contributions to address the key one
leading to the increment. We conduct a quantitative anal-
ysis on different combination of loss functions, between
pixel-wise component {L1, LReg-L2

, LReg-L1
} and frame-

wise {LDSSIM, LReg-DSSIM}, as well as removing the medium
effect and removing both the medium and our proposed loss
function LReg as a reimplementation of 3DGS. These com-
parisons are made across validation sets for the SeaThru-
NeRF dataset in Table 3.

Fig. 6 clearly shows that our frame-level LReg-DSSIM
provides better details in low light. When used alone,
LReg-DSSIM can also improve the reconstruction quality and
structural similarity of distant objects. Our pixel-level
LReg-L1

can further sharpen the edges. The supervision abil-

ity of LReg-L2
[25] for 3DGS-based models is relatively in-

sufficient. Our proposed LReg shows superiority over other
configurations in leading the 3DGS-based model to better
fit HDR scenes and removing the medium component (ba-
sically 3DGS) significantly hurms the performance of our
method, which indicates the necessity of our approach.

Table 3. Ablation Study Avg. over SeaThru-NeRF Scenes

Configuration PSNR↑ SSIM↑ LPIPS↓

L1+LDSSIM 28.98 0.903 0.172
L1+LReg-DSSIM 29.58 0.918 0.128
LReg-L2+LDSSIM 28.18 0.900 0.180
LReg-L2+LReg-DSSIM 29.31 0.917 0.129
LReg-L1+LDSSIM 28.91 0.906 0.160
LReg-L1+LReg-DSSIM 29.60 0.918 0.129
LReg-L1+LReg-DSSIM w/o Med. 29.10 0.912 0.141
L1+LDSSIM w/o Medium 28.96 0.903 0.175

5. Limitations
Although our method achieves good reconstruction quality,
there are some limitations to consider. Firstly, our method,
similar to NeRF-based approaches [18], has some difficul-
ties with distinguishing the background-like object and the
medium far in the distance, as illustrated on the top of Fig. 3
and Fig. 7. However, in the foreground, our method prunes
medium-role primitives well while SeaThru-NeRF cannot
prevent the geometrical field from fitting the medium, re-
sulting in wave-like artifacts. Secondly, same as other NVS
methods [15, 24], our method relies on the camera poses

GT LReg-L1
+LReg-DSSIM LReg-L2

+LReg-DSSIM L1 +LReg-DSSIM w/o Med.

L1 +LReg-DSSIM LReg-L1
+LDSSIM L1 +LDSSIM L1 +LDSSIM w/o Medium

Figure 6. Ablation Study: loss function alignment. Our proposed LReg-DSSIM improves the reconstruction quality of distant details in dark
areas, and the benefit is obvious even when used alone. Our proposed LReg-L1 further improves the fineness of the reconstruction.

Ours SeaThru-NeRF

Figure 7. Limitation: distant medium represented by Gaus-
sians. Our method (left) models distant medium with Gaussians;
SeaThru-NeRF [18] (right) also struggles with the background.

Ours PSNR=24.7 GT SeaThru-NeRF PSNR=21.8

Figure 8. Limitation: insufficient supervision. Our method (left)
has low details visuals in regions not sufficiently covered by train-
ing views. SeaThru-NeRF [18] (right) suffers from blurring.

being available which might prove difficult to obtain in
underwater 3D scenes. Thirdly, our 3DGS-based method
has artifacts in regions lacking observation [15], which is
also suffered by NeRF-based models, as illustrated in the
left side of Fig. 8 and the top part of Fig. 4, while the
NeRF-based SeaThru-NeRF approach (right image) will in-
troduces some blurring, distortion and interpolation. Lastly,
the restored color of the scene from the scene is not ensured

to be precise (especially for the background-like object), as
under the effect of medium, the color of object and the at-
tenuation attribute are entangled during training, which is
shown by Fig. 5.

6. Conclusions
In our work, we focused on the problem of underwater re-
construction, previously tackled by fully volumetric repre-
sentations that are slow to train and render. Therefore, we
proposed to fuse the explicit point-splatting method (3DGS)
with volume rendering to achieve both fast training and
real-time rendering speed. Our method interleaves alpha
compositing of splatted Gaussians with integrated ray seg-
ments passing through the scattering medium. We have
demonstrated that our method achieves state-of-the-art re-
sults while enabling real-time rendering. Furthermore, the
explicit scene representation enables disentanglement of ge-
ometry and the scattering medium. In future work, we
would like to extend our method for larger scenes with both
water and fog.

Acknowledgements. This work was supported by the
Czech Science Foundation (GAČR) EXPRO (grant no. 23-
07973X), and by the Ministry of Education, Youth and
Sports of the Czech Republic through the e-INFRA CZ
(ID:90254). Jonas Kulhanek acknowledges travel support
from the European Union’s Horizon 2020 research and in-
novation programme under ELISE (grant no. 951847).

References
[1] Derya Akkaynak and Tali Treibitz. A revised underwater

image formation model. In CVPR, 2018. 3, 4
[2] Derya Akkaynak and Tali Treibitz. Sea-thru: A method for

removing water from underwater images. In CVPR, 2019. 2
[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields, 2021. 2

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2, 5

[5] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. ICCV, 2023. 2, 5

[6] Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Chen Yang, Wei
Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng Zhang, and
Qi Tian. Segment anything in 3d with nerfs. In NeurIPS,
2023. 2

[7] Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexan-
der W. Bergman, Jeong Joon Park, Axel Levy, Miika Ait-
tala, Shalini De Mello, Tero Karras, and Gordon Wetzstein.
GeNVS: Generative novel view synthesis with 3D-aware dif-
fusion models. In arXiv, 2023. 2

[8] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
arXiv preprint arXiv:2103.15595, 2021. 2

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 2

[10] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee,
and Kyoung Mu Lee. Luciddreamer: Domain-free genera-
tion of 3d gaussian splatting scenes, 2023. 2

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2

[12] Salma P. González-Sabbagh and Antonio Robles-Kelly. A
survey on underwater computer vision. ACM Comput. Surv.,
55(13s), 2023. 2

[13] James T. Kajiya and Brian P Von Herzen. Ray tracing vol-
ume densities. In Proceedings of the 11th Annual Con-
ference on Computer Graphics and Interactive Techniques,
page 165–174, New York, NY, USA, 1984. Association for
Computing Machinery. 3

[14] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathan Luiten. Splatam: Splat, track & map 3d gaussians
for dense rgb-d slam. arXiv, 2023. 2

[15] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM TOG, 2023. 1, 2, 3, 4, 5, 7, 8

[16] Chung Min* Kim, Mingxuan* Wu, Justin* Kerr, Matthew
Tancik, Ken Goldberg, and Angjoo Kanazawa. Garfield:
Group anything with radiance fields. In arXiv, 2024. 2

[17] Jonas Kulhanek and Torsten Sattler. Tetra-NeRF: Represent-
ing neural radiance fields using tetrahedra. arXiv preprint
arXiv:2304.09987, 2023. 2

[18] Deborah Levy, Amit Peleg, Naama Pearl, Dan Rosenbaum,
Derya Akkaynak, Simon Korman, and Tali Treibitz. Seathru-
nerf: Neural radiance fields in scattering media, 2023. 1, 2,
3, 4, 5, 7, 8

[19] Mingrui Li, Shuhong Liu, Heng Zhou, Guohao Zhu, Na
Cheng, Tianchen Deng, and Hongyu Wang. Sgs-slam: Se-
mantic gaussian splatting for neural dense slam, 2024. 2

[20] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. Sdf-
srn: Learning signed distance 3d object reconstruction from
static images. In Advances in Neural Information Processing
Systems (NeurIPS), 2020. 2

[21] Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong
Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, You-
liang Yan, and Wenming Yang. Vastgaussian: Vast 3d gaus-
sians for large scene reconstruction. In CVPR, 2024. 2

[22] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object, 2023. 2

[23] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, 2019. 2

[24] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 1, 2, 7

[25] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul Srinivasan, and Jonathan T. Barron. Nerf in the dark:
High dynamic range view synthesis from noisy raw images,
2021. 4, 7

[26] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 2

[27] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,
2022. 2

[28] Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and
Hanspeter Pfister. Langsplat: 3d language gaussian splatting.
arXiv preprint arXiv:2312.16084, 2023. 2

[29] Chen Quei-An. nerfpl: a pytorch-lightning implementation
of nerf, 2020. 2

[30] Andrea Ramazzina, Mario Bijelic, Stefanie Walz, Alessan-
dro Sanvito, Dominik Scheuble, and Felix Heide. Scattern-
erf: Seeing through fog with physically-based inverse neural
rendering, 2023. 2

[31] Sara Fridovich-Keil and Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
CVPR, 2023. 2

[32] Johannes L Schonberger and Jan-Michael Frahm. Structure
from-motion revisited. CVPR, 2016. 5

[33] Advaith Venkatramanan Sethuraman, Manikandasri-
ram Srinivasan Ramanagopal, and Katherine A. Skinner.

Waternerf: Neural radiance fields for underwater scenes,
2023. 2

[34] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 2

[35] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek
Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T.
Barron, and Henrik Kretzschmar. Block-nerf: Scalable
large scene neural view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8248–8258, 2022. 2

[36] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, 2023. 2, 5

[37] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. CVPR, 2022. 5

[38] Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu,
Taku Komura, Christian Theobalt, and Wenping Wang. F2-
nerf: Fast neural radiance field training with free camera tra-
jectories. CVPR, 2023. 2

[39] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong
Park, Ruiqi Gao, Daniel Watson, Pratul P. Srinivasan, Dor
Verbin, Jonathan T. Barron, Ben Poole, and Aleksander
Holynski. Reconfusion: 3d reconstruction with diffusion pri-
ors. arXiv, 2023. 2

[40] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438–5448, 2022. 2

[41] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. arXiv:2406.09414, 2024. 6, 7

[42] Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong
Dou. Absgs: Recovering fine details for 3d gaussian splat-
ting, 2024. 2, 5

[43] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 2

[44] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[45] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. arXiv:2311.16493, 2023. 2

[46] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient and compact surface reconstruction
in unbounded scenes, 2024. 5

[47] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 586–595, Los
Alamitos, CA, USA, 2018. IEEE Computer Society. 5

	. Introduction
	. Related Work
	. NeRF
	. 3D Gaussian Splatting
	. Computer Vision in Scattering Media

	. Method
	. Preliminaries
	. Splatting with Medium
	. Loss Function Alignment

	. Experiments
	. Experiments
	. Results
	. Ablation Study

	. Limitations
	. Conclusions

